Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Biomedicines ; 11(4)2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2294897

ABSTRACT

Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).

2.
Coronaviruses ; 2(12) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2263677

ABSTRACT

Background: Coronavirus-19 (COVID-19) pandemic is a worldwide public health problem causing 347,070 deaths from December 25, 2019, till May 25, 2020. Phospholipids are structural components of mammalian cytoskeleton and cell membranes. Phosphatidylglycerol is an anionic lipid found in mammalian membranes in low amounts (1-2%) of the total phospholipids. Also, phosphatidylglycerol suppresses viral attachment to the plasma membrane and subsequent replication in lung cells. Phosphatidylglycerol depletion caused by over expression of cytosolic phos-pholipase A2alpha induces lipid accumulation in lung alveoli and promotes acute respiratory distress syndrome (ARDS). An exogenous-surfactant replacement has been successfully achieved in ARDS and improved oxygenation and lung mechanics. Inhibition of cytosolic phospholipase A2alpha impairs an early step of COVID-19 replication. Aim(s): The present study was carried out to explain the correlation between the administration of exogenous artificial surfactant as well as cytosolic phospholipase A2alpha inhibitors to improve oxygenation and lung mechanics and inhibit COVID-19 replication. Method(s): Database research was carried out on Medline, Embase, Cochrane Library, country-spe-cific journals, and following-up WHO reports published between December 25, 2019-May 25, 2020. Result(s): Till 25 May 2020, coronavirus cases were 5,307,298, with 347,070 deathsand 2,314,849 recovered cases. According to the WHO reports, most COVID-19 deaths seen are in people who suffered from other chronic diseases characterized by phospholipidosis and phosphatidylglycerol deficiency, including hypertension, liver, heart, and lung diseases and diabetes. Phospholipases A2 (PLA2) catalyze the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids leading to enhanced inflammation and lung damage. Also, cytosolic phospholipase A2alpha inhibitors may reduce the accumulation of viral proteins and RNA. In addition, administration of exogenous phospholipid surfactant may help COVID-19 infected patients with ARDS to remove inflammatory mediators. Conclusion(s): The present study showed a relation between phosphatidylglycerol deficiency in COVID-19 infected patients with ARDS and/or chronic diseases and their mortality. These findings also showed an important approach for the prevention and treatment of COVID-19 infections by using cytosolic phospholipase A2alpha inhibitors and exogenous administration of a specific phos-pholipid surfactant.Copyright © 2021 Bentham Science Publishers.

3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2284924

ABSTRACT

Coronavirus disease (COVID-19) has become a global pandemic. COVID-19 patients need immediate diagnosis and rehabilitation, which makes it urgent to identify new protein markers for a prognosis of the severity and outcome of the disease. The aim of this study was to analyze the levels of interleukin-6 (IL-6) and secretory phospholipase (sPLA2) in the blood of patients regarding the severity and outcome of COVID-19 infection. The study included clinical and biochemical data obtained from 158 patients with COVID-19 treated at St. Petersburg City Hospital No. 40. A detailed clinical blood test was performed on all patients, as well as an assessment of IL-6, sPLA2, aspartate aminotransferase (AST), total protein, albumin, lactate dehydrogenase (LDH), APTT, fibrinogen, procalcitonin, D-dimer, C-reactive protein (CRB), ferritin, and glomerular filtration rate (GFR) levels. It was found that the levels of PLA2, IL-6, APTV, AST, CRP, LDH, IL-6, D-dimer, and ferritin, as well as the number of neutrophils, significantly increased in patients with mild to severe COVID-19 infections. The levels of IL-6 were positively correlated with APTT; the levels of AST, LDH, CRP, D-dimer, and ferritin; and the number of neutrophils. The increase in the level of sPLA2 was positively correlated with the levels of CRP, LDH, D-dimer, and ferritin, the number of neutrophils, and APTT, and negatively correlated with the levels of GFR and lymphocytes. High levels of IL-6 and PLA2 significantly increase the risk of a severe course by 13.7 and 2.24 times, and increase the risk of death from COVID-19 infection by 14.82 and 5.32 times, respectively. We have shown that the blood levels of sPLA2 and IL-6 increase in cases which eventually result in death and when patients are transferred to the ICU (as the severity of COVID-19 infection increases), showing that IL-6 and sPLA2 can be considered as early predictors of aggravation of COVID-19 infections.


Subject(s)
COVID-19 , Phospholipases A2, Secretory , Humans , Interleukin-6/metabolism , SARS-CoV-2/metabolism , C-Reactive Protein/metabolism , Ferritins , Phospholipases A2, Secretory/metabolism , Biomarkers
4.
Front Immunol ; 14: 1102524, 2023.
Article in English | MEDLINE | ID: covidwho-2249376

ABSTRACT

A vaccine adjuvant known as Adjuvant System 01 (AS01) consists of liposomes containing a mixture of natural congeners of monophosphoryl lipid A (MPL®) obtained from bacterial lipopolysaccharide, and a tree saponin known as QS21. Two vaccines containing AS01 as the adjuvant have been licensed, including a malaria vaccine (Mosquirix®) approved by World Health. Organization and European Medicines Agency for use in sub-Saharan Africa, and a shingles vaccine (Shingrix®) approved by the U.S. Food and Drug Administration. The success of the AS01 vaccine adjuvant has led to the development of another liposomal vaccine adjuvant, referred to as Army Liposome Formulation with QS21 (ALFQ). Like AS01, ALFQ consists of liposomes containing monophosphoryl lipid A (as a synthetic molecule known as 3D-PHAD®) and QS21 as adjuvant constituents, and the polar headgroups of the liposomes of AS01 and ALFQ are similar. We compare here AS01 with ALFQ with respect to their similar and different liposomal chemical structures and physical characteristics with a goal of projecting some of the likely mechanisms of safety, side effects, and mechanisms of adjuvanticity. We hypothesize that some of the side effects exhibited in humans after injection of liposome-based vaccines might be caused by free fatty acid and lysophospholipid released by enzymatic attack of liposomal phospholipid by phospholipase A2 at the injection site or systemically after injection.


Subject(s)
Saponins , Vaccines , Humans , Adjuvants, Immunologic , Adjuvants, Vaccine , Liposomes
5.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: covidwho-2253818

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
6.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 111-121, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2208307

ABSTRACT

The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.


Subject(s)
Antiviral Agents , COVID-19 , Cryoelectron Microscopy , Linoleic Acid , SARS-CoV-2 , Humans , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Communicable Disease Control , COVID-19/therapy , COVID-19/virology , Linoleic Acid/metabolism , Linoleic Acid/pharmacology , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
7.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2039868

ABSTRACT

The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A2 that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A2 was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.


Subject(s)
Liposomes , Metal Nanoparticles , Cholesterol , Cysteine , Dimyristoylphosphatidylcholine , Gold/chemistry , Liposomes/chemistry , Metal Nanoparticles/chemistry , Octoxynol , Phospholipases , Phospholipids , Phosphorylcholine
8.
Exp Biol Med (Maywood) ; 247(13): 1112-1123, 2022 07.
Article in English | MEDLINE | ID: covidwho-2009311

ABSTRACT

The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.


Subject(s)
Apoptosis , Cytokine Release Syndrome , Cell Membrane , Cytokines , Humans , Inflammasomes
9.
American Journal of Kidney Diseases ; 79(4):S102-S103, 2022.
Article in English | EMBASE | ID: covidwho-1996905

ABSTRACT

The role of infectious agents derived antigens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized as a trigger for development of autoimmune mediated disorders following natural infection or immunization. However, there is a scarcity of reports of occurrence of autoimmune associated kidney disorders or flare ups following exposure to a SARS-CoV-2 vaccine. A 65-year-old female presented to a nephrology clinic for evaluation of worsening renal dysfunction. The patient is well known to have systemic sarcoidosis under complete remission on low dose prednisone and likely membranous nephropathy (no previous kidney biopsy) with mildly elevated phospholipase A2 receptor (PLA2R) antibodies. Her membranous nephropathy was in partial remission on angiotensin receptor blockage, with urine to protein creatinine ratio (UPCR) of 1.5 g/g . Five months after receiving the single dose SARS-CoV-2 vaccine (Johnson & Johnson®), she started having a flare up of her systemic sarcoidosis with worsening joint, skin and respiratory symptoms. Blood chemistry revealed worsening renal dysfunction with elevated creatinine up to 1.7 mg/dL from her baseline of 1.0 mg/dL. UPCR was also elevated at 3.4 g/g. Urine sediment revealed no red blood cells or casts, only several calcium oxalate dihydrate crystals. A kidney biopsy was performed and showed a combination of membranous nephropathy (PLA2R positive) along with granulomatous interstitial nephritis with well-formed epithelioid granulomas characteristic of sarcoidosis. She was started on high dose prednisone and her renal function improved to 1.2 mg/dL, UPCR decreased to 1.8 g/g and serum PLA2R antibodies became undetectable. She is still being monitored. After many years of renal sarcoidosis and membranous nephropathy remission, the relapse of renal disease after receiving the SARS-CoV-2 vaccine (Johnson & Johnson®) suggests the association between receiving the vaccine and the recurrence of renal sarcoidosis and membranous nephropathy.

10.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1969411

ABSTRACT

The development of novel agents to combat COVID-19 is of high importance. SARS-CoV-2 main protease (Mpro) is a highly attractive target for the development of novel antivirals and a variety of inhibitors have already been developed. Accumulating evidence on the pathobiology of COVID-19 has shown that lipids and lipid metabolizing enzymes are critically involved in the severity of the infection. The purpose of the present study was to identify an inhibitor able to simultaneously inhibit both SARS-CoV-2 Mpro and phospholipase A2 (PLA2), an enzyme which plays a significant role in inflammatory diseases. Evaluating several PLA2 inhibitors, we demonstrate that the previously known potent inhibitor of Group IIA secretory PLA2, GK241, may also weakly inhibit SARS-CoV-2 Mpro. Molecular mechanics docking and molecular dynamics calculations shed light on the interactions between GK241 and SARS-CoV-2 Mpro. 2-Oxoamide GK241 may represent a lead molecular structure for the development of dual PLA2 and SARS-CoV-2 Mpro inhibitors.

11.
Arch Microbiol ; 204(8): 526, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1958972

ABSTRACT

Viral infections are linked to a variety of human diseases. Despite the achievements made in drug and vaccine development, several viruses still lack preventive vaccines and efficient antiviral compounds. Thus, developing novel antiviral agents is of great concern, particularly the natural products that are promising candidates for such discoveries. In this study, we have purified an approximately 15 kDa basic phospholipase A2 (PLA2) enzyme from the Egyptian cobra Naja haje haje venom. The purified N. haje PLA2 showed a specific activity of 22 units/mg protein against 6 units/mg protein for the whole crude venom with 3.67-fold purification. The antiviral activity of purified N. haje PLA2 has been investigated in vitro against bovine coronavirus (BCoV) and simian rotavirus (RV SA-11). Our results showed that the CC50 of PLA2 were 33.6 and 29 µg/ml against MDBK and MA104 cell lines, respectively. Antiviral analysis of N. haje PLA2 showed an inhibition of BCoV and RV SA-11 infections with a therapeutic index equal to 33.6 and 16, respectively. Moreover, N. haje PLA2 decreased the BCoV and RV SA-11 titers by 4.25 log10 TCID50 and 2.5 log10 TCID50, respectively. Thus, this research suggests the potential antiviral activity of purified N. haje PLA2 against BCoV and RV SA-11 infections in vitro.


Subject(s)
Antiviral Agents , Coronavirus, Bovine , Elapid Venoms , Phospholipases A2 , Rotavirus , Animals , Antiviral Agents/pharmacology , Coronavirus, Bovine/drug effects , Elapid Venoms/pharmacology , Naja haje , Phospholipases A2/pharmacology , Rotavirus/drug effects
12.
Medical Immunology ; 24(4):705-728, 2022.
Article in Russian | Academic Search Complete | ID: covidwho-1955153

ABSTRACT

Secretory phospholipases A2 (sPLA2) represent a large superfamily of enzymes with a molecular weight of 14-19 kDa, including 15 groups and more than 30 isoforms belonging to four types: secretory (sPLA2), cytosolic (cPLA2), calcium-independent (iPLA2) and lipoprotein-associated phospholipase A2 (LP-PLA2, PAF-AH). Eleven species of secretory sPLA2s (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA, and XIIB) have been found in mammals, performing versatile functions and participating in the pathogenesis of a wide range of diseases. On the one hand, sPLA2 may promote elimination of damaged, apoptotic cells by hydrolyzing membrane phospholipids, and exerts a strong bactericidal and antiviral properties, including pronounced effects against antibiotic-resistant strains of microorganisms. In this regard, the use of sPLA2 may represent a new strategy for the treatment of bacterial and viral infections. Moreover, due to the action of sPLA2 on its substrates, a number of biologically active molecules (arachidonic, lysophosphatidic acids, lysophospholipids, fatty acids, prostaglandins, leukotrienes, thromboxanes) are formed, which provide strong inflammatory, detergent, coagulating effects and increase vascular permeability. This pro-inflammatory role of sPLA2 may explain its increase levels and activity in cardiovascular, respiratory, autoimmune, metabolic, oncological, bacterial and viral disorders. The review article presents a classification of sPLA2 isoforms, their substrates, regulatory factors, biological significance, and mechanisms of their strong bactericidal, virucidal, and proinflammatory activity in the heart and lung disorders, autoimmune, metabolic, bacterial, and viral diseases. In particular, the mechanisms of the selective action of sPLA2 against Gram-positive and Gram-negative microorganisms are discussed. We consider diagnostic and prognostic significance, correlations between elevated levels and activity of sPLA2 and distinct clinical symptoms, severity and outcome in the patients with coronary heart disease (CAD), acute myocardial infarction (AMI), atherosclerosis, acute inflammatory lung injury (ALI), respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, bronchial asthma, bacterial infections, septicemia and viral (COVID-19) infections. The opportunity of using sPLA2 as a biomarker of the severity and outcome of patients with chronic obstructive pulmonary disease, bacterial infections, sepsis and viral infections, including COVID-19, is also considered. (English) [ FROM AUTHOR] Секреторные фосфолипазы А2 (sPLA2) представляют собой большое суперсемейство ферментов с молекулярной массой 14-19 кДа, включающее 15 групп и более 30 изоформ, принадлежащих к четырем типам: секреторный (sPLA2), цитозольный (cPLA2), кальций-независимый (iPLA2) и липопротеин-ассоциированная фосфолипаза A2 (LP-PLA2, PAF-AH). У млекопитающих обнаружены одиннадцать секреторных sPLA2 (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA и XIIB), выполняющие разносторонние функции и участвующие в патогенезе широкого спектра заболеваний. С одной стороны, sPLA2, гидролизуя фосфолипиды мембран, способствуют элиминации поврежденных, апоптотических клеток и оказывают сильное бактерицидное, вируцидное действие, в том числе против антибиотикорезистентных штаммов микроорганизмов. Ð’ этом плане использование sPLA2 может представлять новую стратегию терапии бактериальных и вирусных инфекций. С другой стороны, в результате действия sPLA2 на ее субстраты образуются биологически активные молекулы (арахидоновая, лизофосфатидная кислоты, лизофосфолипиды, жирные кислоты, простагландины, лейкотриены, тромбоксаны), которые оказывают сильное воспалительное, детергирующее, коагулирующее действие и повышают проницаемость сосудов. Такая провоспалительная роль sPLA2 обуславливает повышение ее уровней и активности при сердечно-сосудистых, дыхательных, аутоиммунных, метаболических, онкологических, бактериальных и вирусных заболеваниях. Ð’ обзоре приводится классификация изоформ sPLA2, рассматриваются их субстраты, регулирующие факторы, биологическое значение и механизмы сильного бактерицидного, вируцидного действия, а также провоспалительной активности при сердечно-сосудистых, дыхательных, аутоиммунных, метаболических, бактериальных и вирусных заболеваниях. Отдельно излагаются механизмы селективного действия sPLA2 в отношении грамположительных и грамотрицательных микроорганизмов. Обсуждаются диагностическая, прогностическая значимость, корреляции повышенных уровней и активности sPLA2 с клиническими симптомами, тяжестью и исходом пациентов с ишемической болезнью сердца (CAD), острыминфарктом миокарда (AMI), атеросклерозом, острым воспалительным повреждением легких (ALI), респираторным дистресс-синдромом (ARDS), хронической обструктивной болезнью легких (COPD), ревматоидным Ð°Ñ€Ñ‚Ñ€Ð¸Ñ Ð¾Ð¼, бронхиальной астмой, бактериальными инфекциями, сепсисом и вирусными (COVID-19) инфекциями. Рассматривается возможность использования sPLA2 в качестве биомаркера тяжести и исхода пациентов с хронической обструктивной болезнью легких, бактериальными инфекциями, сепсисом и вирусными, в том числе COVID-19, инфекциями. (Russian) [ FROM AUTHOR] Copyright of Medical Immunology (1563-0625) is the property of National Electronic-Information Consortium and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

13.
Cell Mol Life Sci ; 79(3): 143, 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1701908

ABSTRACT

Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin's ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.


Subject(s)
Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Melatonin/therapeutic use , SARS-CoV-2/drug effects , COVID-19/virology , Humans
14.
Toxicol Rep ; 8: 1389-1393, 2021.
Article in English | MEDLINE | ID: covidwho-1318618

ABSTRACT

Colchicine's medical evolution is historically bound to the Mediterranean basin, since remarkable researchers from this region underscored its valuable properties. With the passing of years colchicine became an essential pharmaceutical substance for the treatment of rheumatologic and cardiovascular diseases. In light of recent findings, the therapeutic value of colchicine has grown. In clinical practice, colchicine remains underutilized in view of its proven efficacy and safety. Its complex pharmacokinetics and multifaceted anti-inflammatory role remain under investigation. The current review addresses the safe administration of colchicine in view of key drug to drug interactions. Finally, we are briefly presenting colchicine's future potential applications.

15.
Exp Biol Med (Maywood) ; 246(23): 2543-2552, 2021 12.
Article in English | MEDLINE | ID: covidwho-1308082

ABSTRACT

Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.


Subject(s)
COVID-19/blood , Phospholipases A2, Secretory/blood , Systemic Inflammatory Response Syndrome/blood , Adolescent , Adult , Age Factors , Biomarkers/blood , COVID-19/complications , COVID-19/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/virology
16.
Expert Opin Drug Discov ; 16(11): 1287-1305, 2021 11.
Article in English | MEDLINE | ID: covidwho-1276091

ABSTRACT

AREAS COVERED: This review article summarizes the most important synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated Lp-PLA2), discussing their in vitro and in vivo activities as well as their recent applications and therapeutic properties. Recent findings on the role of PLA2 in the pathobiology of COVID-19 are also discussed. EXPERT OPINION: Although a number of PLA2 inhibitors have entered clinical trials, none has reached the market yet. Lipoprotein-associated PLA2 is now considered a biomarker of vascular inflammation rather than a therapeutic target for inhibitors like darapladib. Inhibitors of cytosolic PLA2 may find topical applications for diseases like atopic dermatitis and psoriasis. Inhibitors of secreted PLA2, varespladib and varespladib methyl, are under investigation for repositioning in snakebite envenoming. A deeper understanding of PLA2 enzymes is needed for the development of novel selective inhibitors. Lipidomic technologies combined with medicinal chemistry approaches may be useful tools toward this goal.


Subject(s)
COVID-19 Drug Treatment , Drug Design , Drug Discovery , Inflammation/drug therapy , Phospholipase A2 Inhibitors/therapeutic use , Humans , SARS-CoV-2
17.
Biochimie ; 189: 40-50, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1272312

ABSTRACT

Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.


Subject(s)
COVID-19/enzymology , Pandemics , Phospholipases A2, Secretory/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/pathology , Disease Models, Animal , Humans , COVID-19 Drug Treatment
18.
Mol Neurobiol ; 58(1): 106-117, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-746880

ABSTRACT

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , SARS-CoV-2 , Animals , Antimalarials/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , COVID-19/metabolism , Humans , Nervous System Diseases/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL